Solve the following system of equations by elimination method 2x+3y = 4,3x-y=-5​

Question

Solve the following system of equations by elimination method
2x+3y = 4,3x-y=-5​

in progress 0
Aubrey 3 days 2021-10-11T15:39:54+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-10-11T15:41:31+00:00

    Answer:

    Step-by-step explanation:

    2x+3y=4

    3x*3-3*y=-5*3

    2x+3y=4

    9x-3y=-15

    11x=-11

    X=-11/11

    X=-1

    Put the value of x in eq.no 1

    2x+3y=4

    2*-1+3y=4

    -2+3y=4

    3y=4+2

    3y=6

    Y=6/3

    Y =2

    0
    2021-10-11T15:41:52+00:00

    \Large\underline\mathbb\blue{ANSWER}

     \tt{ 2x + 3y = 4...(i)} \\  \tt{3x - y =  - 5 ...(ii)}

    After making coefficient of y equal,

     \tt{2x + 3y = 4...(iii)}\\  and   \\   \tt{9x  - 3y =  - 45 ...(iv)}

    Subtracting equation (iv) from equation (iii),

     \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{(9x + 3y) - (2x + 3y) =  - 45 - 4}  \\ \\  \implies \tt{2x +  \cancel{3y} - 9x  -  \cancel{ 3y} = 49}  \\  \\ \implies \tt{ - 7x =  - 49} \\  \\   \implies \tt{x =  \frac{  \cancel{-} 49}{  \cancel{-} 7} }  \\  \\  \implies \boxed{ \tt{ \pink{x = 7}}}

    Substituting the values in equation (i),

      \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{2x + 3y = 4}  \\  \\  \implies \tt{2( - 7)} + 3y = 4 \\  \\  \implies \tt{ - 14 + 3y = 4} \\  \\  \implies \tt{3y = - 18}   \\  \\   \implies\tt{y =  \frac{ - 18}{3} }  \\  \\  \implies \boxed{ \pink{ \tt{y =  - 6}}}

    hope it’s helpful

Leave an answer

Browse

14:4+1-6*5-7*14:3+5 = ? ( )