if tanA+sinA=m and tanA-sinA=n , then show that m2-n2​

Question

if tanA+sinA=m and tanA-sinA=n , then show that m2-n2​

in progress 0
Audrey 1 week 2021-09-15T19:06:06+00:00 1 Answer 0 views 0

Answers ( )

    0
    2021-09-15T19:07:52+00:00

    Answer:

    If tanA + sinA = m and tanA – sinA = n, show that m2 – n2 = 4√(mn)Solution :- LHS = m2 – n2 = (tanA + sinA)2 – (tanA – sinA)2 = tan2A + sin2A + 2tanAsinA – tan2A – sin2A + 2tanAsinA = 4tanA.sinA RHS = 4√(mn) = 4√(tanA + sinA).(tanA – sinA ) = 4√(tan2A – sin2A = 4√(sin2A/cos2A – sin2A) = 4√{(sin2A – sin2Acos2A)/cos2A} = 4√{sin2A(1 – cos2A)/cos2A} = 4√(sin2A.sin2A/cos2A) = 4(sinA.sinA/cosA) = 4.tanA.sinA = LHS2

Leave an answer

Browse
Browse

14:4+1-6*5-7*14:3+5 = ? ( )