If m and n are zeroes of the polynomial x^2-5x+6 , find m^2n+n^2m​

Question

If m and n are zeroes of the polynomial x^2-5x+6 , find m^2n+n^2m​

in progress 0
Savannah 2 months 2021-12-03T08:13:50+00:00 1 Answer 0 views 0

Answers ( )

    0
    2021-12-03T08:14:57+00:00

    Answer:m^2n+n^2m=37/36

    Step-by-step explanation:x^2-5x+6=0

    x ^2+x-6x+6=0

    x  (x +1)-6 (x +1)=0

    (x+1)or (x-6)=0

    x +1=0,x-6=0

    x =-1,x =6

    Zeroes are -1,6then we get,m=-1,n=6

    m^2n+n^2m=(-1)^2×6+(6)^2 (-1)

    =(-1)^12+(6)^2×-1

    =1+6^-2     (since a-^2=1/a^2)

    =1+1/6^2

    =1+1/36

    =36+1/36=37 /36

Leave an answer

Browse

14:4+1-6*5-7*14:3+5 = ? ( )