if alpha and beta are in the roots of the equation 3×2-6x+4=0 find the value of alpha^2 and beta^2​

Question

if alpha and beta are in the roots of the equation 3×2-6x+4=0 find the value of alpha^2 and beta^2​

in progress 0
Arya 1 week 2021-10-04T19:40:44+00:00 1 Answer 0 views 0

Answers ( )

    0
    2021-10-04T19:42:02+00:00

    /* There is a mistake in the question. It may be like this . */

     Given \: \alpha \: and \: \beta \: are \: roots \\of \: a \: Quadratic \: equation \: 3x^{2} - 6x + 4 = 0

     Compare \:above \: equation \: with \\ax^{2} + bx + c = 0 \:, we \:get

     a = 3 , b = -6 \: and \: c = 4

     i ) Sum \:of \: the \: roots = \frac{-b}{a}

     \implies \alpha + \beta = \frac{ -(-6)}{3}

     \implies \alpha + \beta = \frac{ 6}{3}

     \implies \alpha + \beta = 2 \: --(1)

     ii ) Product \:of \: the \: roots = \frac{c}{a}

     \implies \alpha  \beta = \frac{ 4}{3}\: --(2)

     Now, \red { \alpha^{2} + \beta^{2} } \\= ( \alpha + \beta )^{2} - 2 \alpha \beta \\= 2^{2} - 2 \times \frac{ 4}{3} \\= 4 - \frac{ 8}{3} \\= \frac{12 - 8 }{3} \\= \frac{ 4}{3}

    Therefore.,

      \red {Value \:of \: \alpha^{2} + \beta^{2} }\green { = \frac{ 4}{3}}

    •••♪

Leave an answer

Browse

14:4+1-6*5-7*14:3+5 = ? ( )