given that sin theta =a/b ,then cos theta =​

Question

given that sin theta =a/b ,then cos theta =​

in progress 0
Jade 6 days 2021-11-25T00:02:10+00:00 1 Answer 0 views 0

Answers ( )

    0
    2021-11-25T00:03:35+00:00

    Answer:

    \frac{\sqrt{(a^{2}+b^{2} )} }{b\\}

    Step-by-step explanation:

    Sin Theta= Perpendicular/Hypotenuse= a/b

    Taking k as the constant term, Perpendicular= a.k

                                                        Hypotenuse= b.k

    ∴Base= \sqrt{(a^{2}k^{2} +b^{2}k^{2}  ) } = \sqrt{(a^{2}+b^{2})k^{2}   } =\sqrt{(a^{2}+b^{2})}k ( by Pythogorus Theorum

    Cos Theta= Base/Hypotenuse= \frac{ \sqrt{(a^{2}+b^{2})  } k}{bk}

                                                      =\frac{\sqrt{(a^{2}+b^{2} )} }{b\\}

Leave an answer

Browse

14:4+1-6*5-7*14:3+5 = ? ( )