Find 16th term of the A.P.given as -5, -5/2, 0, 5/2……………. please answer it ​

Question

Find 16th term of the A.P.given as -5, -5/2, 0, 5/2…………….

please answer it ​

in progress 0
Isabelle 5 days 2021-11-24T22:58:55+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-11-24T23:00:39+00:00

    \LARGE\star\boxed{\mathfrak\pink{\underline{\underline{Answer}}}}\star\\\\\\

    \large\textbf{$\dfrac{65}{2}$}\\\\\\

    \LARGE\star\star\boxed{\mathbb\red{\underline{\underline{GIVEN}}}}\star\star\\\\\\

    \large\odot\:\:\textbf{A.P.\:=\:-5\:,\:$\dfrac{-5}{2}$\:,\:0\:,\:$\dfrac{5}{2}$\:,\:....}\\\\

    \large\odot\:\:\textbf{$a_1\:or\:a\:=\:-5$}\\\\

    \large\odot\:\:\textbf{d=$\dfrac{-5}{2}\:-\:(-5)$}\\

    \large\longrightarrow\textbf{d=$\dfrac{5}{2}$}\\\\\\

    \LARGE\star\star\star\boxed{\mathbb\green{\underline{\underline{TO\:FIND}}}}\star\star\star\\\\\\

    \large\odot\:\:\textbf{$16_{th}$\:term\:of\:A.P.}\\\\\\

    \LARGE\star\star\star\boxed{\mathcal\red{\underline{\underline{Explanation}}}}\star\star\star\\\\\\

    \Large\boxed{\texttt{Formula\:=\:a\:+\:(n-1)d}}\\\\\\

    \Large\texttt{where }\\\\\\

    \large\odot\:\:\textsf{a is the first term }\\\\

    \large\odot\:\:\textsf{n is the number of term}\\

    \large\textsf{which we have to find}\\\\

    \large\odot\:\:\textsf{d is the difference}\\

    \large\textsf{between two terms}\\\\

    \large\Longrightarrow\textsf{$T_n$ = -5+(16-1)$\dfrac{5}{2}$}\\

    \large\Longrightarrow\textsf{$T_n$ = -5+15$\dfrac{5}{2}$}\\

    \large\Longrightarrow\textsf{$T_n$ = -5+$\dfrac{75}{2}$}\\

    \large\Longrightarrow\textsf{$T_n$ = $\dfrac{-10+75}{2}$}\\

    \large\Longrightarrow\textsf{$T_n$ = $\dfrac{65}{2}$ }\\\\

    \Large\therefore\textbf{The\:Answer\:is\:$\dfrac{65}{2}$}\\\\\\

    ▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

    0
    2021-11-24T23:00:43+00:00

    hope this will help you and marks it as brainlist plzzzzzzzzz

Leave an answer

Browse

14:4+1-6*5-7*14:3+5 = ? ( )