8. Find the perimeter and area of a triangle whose sides are of lengths 52 cm, 56 cm and 60 cm respectively.​

Question

8. Find the perimeter and area of a triangle whose sides are of lengths 52 cm, 56 cm
and 60 cm respectively.​

in progress 0
3 months 2021-10-15T14:23:41+00:00 2 Answers 0 views 0

Answers ( )

  1. Charlotte
    0
    2021-10-15T14:25:01+00:00

    Answer: Perimeter = 168 cm; Area = 1344 cm²

    Step-by-step explanation:

    Perimeter = Sum of all sides = 52 cm + 56 cm + 60 cm = 168 cm

    We can calculate area by using heron’s formula.

    Area = \sqrt{s(s-a)(s-b)(s-c)}

    s = semi perimeter = 168/2 = 84 cm

    a = 52 cm

    b = 56 cm

    c = 60 cm

    \sqrt{s(s-a)(s-b)(s-c)}

    =\sqrt{84(84-52)(84-56)(84-60)}

    = \sqrt{84 \times 32 \times 28 \times 24 }

    = \sqrt{(84) \times (32) \times (28) \times (24) }

    = \sqrt{(2\times2\times3\times7) \times (2\times2\times2\times2\times2) \times (2\times2\times7) \times (2\times2\times2\times3) }

    = \sqrt{2\times2\times3\times7 \times 2\times2\times2\times2\times2 \times 2\times2\times7 \times 2\times2\times2\times3 }

    = \sqrt{2\times2\times 2\times2\times2\times2\times2 \times 2\times2\times 2\times2\times2\times3\times3\times7\times7   }

    = \sqrt{(2\times2)\times (2\times2)\times(2\times2)\times(2 \times 2)\times(2\times 2)\times(2\times2)\times(3\times3)\times(7\times7)   }

    = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 7

    = 64 \times 3 \times 7

    =64 \times 21

    = 1344

    Area = 1344 cm²

  2. Charlotte
    0
    2021-10-15T14:25:09+00:00

    Step-by-step explanation:

    the lengths are

    • 52 cm (a)
    • 56 cm (b)
    • 60 cm (c)

    so, the perimeter = (52+56+60) cm

    = 168 cm

    the half perimeter (s) = (168/2) = 84 cm.

    now, the rule of the area of triangle

    = √[s(s-a)(s-b)(s-c)]

    so, the area = √[84(84-52)(84-56)(84-60)] cm²

    = √[84×32×28×24] cm²

    = √1806336 cm²

    = 1,344 cm²

    I hope it is a helpful answer .........

Leave an answer

Browse

14:4+1-6*5-7*14:3+5 = ? ( )