2. If[x] denotes the greatest integer function, then the domain of the function X -[x] f(x) = is V log(x2 – x)

Question

2. If[x] denotes the greatest integer function,
then the domain of the function
X -[x]
f(x) =
is
V log(x2 – x)
(a) (1, 0)
(b)(1, .o) – Z
1 – 15 1+ 15 [1- √5 √5+1
(C) R
(d)
2
2
2. 2​

in progress 0
Kinsley 3 days 2021-10-11T17:11:09+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-10-11T17:12:10+00:00

    Answer:

    decimal in mathematics is a proper used fraction

    0
    2021-10-11T17:12:56+00:00

    Answer:

    Step-by-step explanation:

    Here is  your answer:

    Let, f(x) =x³ +px²+x+6 

         g(x) = 2x³ – x²+(p+3)x -6

    Now , when we divide by (x -3) both equations give same remainder.

    Let the remainder be ‘r’.

    So, When we substitute x = 3 . Then they give ‘r’ as the value.

    So, f(3) → 3³ + p(3²) + 3 + 6 = r .

                ⇒ 27 + 9p + 9 = r

     

                ⇒ 36 +9p = r   – (i)

         g(3) → 2(3³) – 3² + 3(p+3) -6 = r

                ⇒ 54 – 9 + 3p + 9 -6 =r

                ⇒ 48 +3p = r   – (ii)

    Now equate (i) & (ii).

     Then, 48 + 3p = 36 + 9p  ( r = r)

              48 – 36 = 9p – 3p

     

               12 = 6p

     

    Therefore p = 2.

    ______________________________________________________

    Hope my answer is helpful to u.

Leave an answer

Browse

14:4+1-6*5-7*14:3+5 = ? ( )